Guides Linux Kernel Adds Niagara Support

Linux Kernel Adds Niagara Support

Support for another architecture has been added to the latest release of the  Linux kernel, version 2.6.17. Sun’s “Niagara” processors are now supported in the mainline Linux kernel, although the additional architecture support is far from the only addition in the third new kernel point release of 2006.
The latest Linux kernel release adds support for Sun’s Niagra architecture.

Sun’s UltraSPARC “Niagara” chips were released to the market late last year. They include up to eight processing cores that can support up to four threads per processor for a total of 32.

The official 2.6.17 kernel from is not the first Linux kernel that supports Sun’s Niagara architecture, however. At the end of May, space tourist Mark Shuttleworth rolled out Ubuntu “Dapper Drake,”  which was the first mainstream Linux distribution to support Niagara. Ubuntu Dapper Drake actually ships with a 2.6.15 kernel with the Niagara support backported into it.

The new 2.6.17 kernel makes it easier for Linux to deal with disconnection/reconnection events. Linux kernel developer Stefan Rompf had previously explained that the 2.6.17 kernel will allow userspace to influence connection event-signaling, so that a DHCP client could be notified a connection has terminated and the client should attempt to obtain a new IP address.

The new DHCP effort is currently stalled, according to Rompf.

“But with the bunch of patches I have here, I consider it feature complete and will release a beta version in the second half of June,” Rompf told

The new kernel also has a laundry list of other new features and supports, including  firewall support in the Linux iptables feature for the VoIP H.323  protocol.

A new input output (I/O) mechanism called splice () has also been added, which may well serve to improve the performance of certain function. In an April mailing list posting Linus Torvalds explained that the really high-level concept behind splice is the notion of a “random kernel buffer” that is exposed to user space.

“In other words, splice() and tee() work on a kernel buffer that the user has control over, where “splice()” moves data to/from the buffer from/to an arbitrary file descriptor, while “tee()” copes the data in one buffer to another,” Torvalds wrote. “So in a very real (but abstract) sense, “splice()” is nothing but read()/write() to a kernel buffer, and “tee()” is a memcpy() from one kernel buffer to another.”

The 2.6.17 kernel introduces and supports the latest needs in the industry, but it also improves support for legacy technologies as well.

Case in point: support for the legacy DECnet protocol.

This article was originally published on

Latest Posts

KVM vs VMware Hypervisor Comparison 2020

The KVM vs VMware hypervisor comparison is a classic debate. Hypervisors have increased in usability and power over the last several years as more...

Compare HP’s iLo & Dell’s iDRAC Server Management Tools

Most servers shipped from the major manufacturers today come with some type of out-of-band management tool or baseboard management controller (BMC). Two of the...

Get-MsolUser PowerShell Attributes & Properties

This article has been updated for 2020. Please note that WAAD was retired in 2018, but the cmdlets listed in this article are still...

Microsoft Azure PowerShell Scripts and Commands

Using PowerShell scripts and commands for quickly executing tasks in Windows operating systems offers a number of benefits over traditional scripting languages, such as...

Microsoft Hyper V Review

Microsoft Hyper-V: The Bottom line Microsoft Hyper-V lagged behind VMware's virtualization tool, one of the most popular tools in the space, when it was first...

Related Stories